5 resultados para Plant Sciences

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil
column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to
be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing
agent for removing As even from soil with high Fe content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon distribution within perennial ryegrass was determined at different stages of plant development, by pulse-labelling laboratory and field-grown plants with 14C-CO2. During the early stages of growth (23-51 days), C distribution of laboratory grown plants was not markedly affected by plant age, with 12.4-24% of net assimilated label lost into the soil as root-soil respiration. The percentage of net assimilate translocated below ground was 20-28% during this stage of growth. At 65 days, the percentage of the label translocated below ground decreased to 8.1% of the net assimilate, with a subsequent decrease in root-soil respiration to 3.9%. The ability of the plant to fix the label (expressed in MBq g-1 oven dry total plant weight) decreased steadily as the plants aged. When the 30 day old plants were subjected to water stress (soil water potential -1.5 MPa) for 2 days before pulse-labelling, root-soil respiration of the pulse-label decreased compared with plants grown at field capacity. The distribution of a 14C pulse-label within perennial ryegrass grown under field conditions was found to be dependent on the age of the plants. For 4 week old plants, 67% of net assimilated label was translocated below ground, with 64.8% of this respired by the roots and soil. Less label was translocated below ground at subsequent pulse-labels from weeks 8 to 24. The proportion of label translocated below ground respired by the roots and soil also decreased. The investment of label in the plant shoots was found to be greater in field grown plants as compared to plants of the same age grown in a controlled, laboratory environment. © 1990.